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RealLiFe: Real-Time Light Field Reconstruction
via Hierarchical Sparse Gradient Descent

Yijie Deng∗, Lei Han∗, Tianpeng Lin, Lin Li, Jinzhi Zhang, and Lu Fang§

Abstract—With the rise of Extended Reality (XR) technology, there is a growing need for real-time light field reconstruction from
sparse view inputs. Existing methods can be classified into offline techniques, which can generate high-quality novel views but at the
cost of long inference/training time, and online methods, which either lack generalizability or produce unsatisfactory results. However,
we have observed that the intrinsic sparse manifold of Multi-plane Images (MPI) enables a significant acceleration of light field
reconstruction while maintaining rendering quality. Based on this insight, we introduce RealLiFe, a novel light field optimization
method, which leverages the proposed Hierarchical Sparse Gradient Descent (HSGD) to produce high-quality light fields from sparse
input images in real time. Technically, the coarse MPI of a scene is first generated using a 3D CNN, and it is further optimized
leveraging only the scene content aligned sparse MPI gradients in a few iterations. Extensive experiments demonstrate that our
method achieves comparable visual quality while being 100x faster on average than state-of-the-art offline methods and delivers better
performance (about 2 dB higher in PSNR) compared to other online approaches.

Index Terms—Light field, Multi-plane Image, Hierarchical Sparse Gradient Descent.
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1 INTRODUCTION

W ITH the rapid development of XR / naked eye 3D
display devices, there is an increasing demand for

live light field video rendering techniques that can record
and stream light field video in real time, allowing viewers
to interactively change the viewpoint and focus of the video.
Even with the latest breakthroughs in light field reconstruc-
tion [1], [2] and neural radiance fields [3], [4], it remains a
challenging task.

To enable live light field reconstruction, the support-
ing algorithms and representations should be capable of
producing high-quality view synthesis results in real time
and generalize well to unseen scenes. However, current
approaches face difficulties in achieving a balance between
visual performance and real-time effectiveness.

• Methods relying on implicit scene representation,
such as NeRF [3] and its derivatives [10], [11], [12],
[13] can produce view synthesis results with high
visual quality, but require long-time per-scene opti-
mization and dense view inputs. While some gen-
eralization techniques [5], [6], [14], [15], [16], [17]
can generate novel views that are generalizable with
the help of multi-view stereo (MVS) geometry rules,
it is still not fast enough for them to achieve real-
time performance due to high memory usage and
complex computation of intermediate cost volumes.

• Methods that rely on explicit scene representation,
such as Plenoxels [18], PlenOctrees [19] and DVGO
[20] enclose a 3D scene in a voxel grid and optimize
the radiance fields within it. While such methods can
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Fig. 1. Rendering quality and efficiency comparison with state-of-the-art
novel view synthesis methods [5], [6], [7] and light field reconstruction
methods [8] on Real Forward-Facing [9] of image size 512 × 384.
RealLiFe is our default model with 3 iterations of gradient descent, and
RealLiFe-2I is one with 2 iterations of gradient descent.

reproduce intricate geometric and texture details at
high grid resolutions, they can not generalize to new
scenes without extensive per-scene optimization. Al-
though some methods with learned features [1], [9],
[21], [22] can generalize well to unseen scenes from
sparse views, they still require a significant amount
of time to infer a scene due to the heavy computa-
tional burden of processing large multi-plane image
(MPI) and plane sweep volume (PSV).

• Methods relying on surrogate geometry are com-

mailto:fanglu@tsinghua.edu.cn
http://luvision.net


2

Fig. 2. The derivation of MPI sparse gradients and the optimization
process. (a) An MPI plane Md at depth d can be decomposed into
an RGB plane cd and an alpha (transparency) plane αd. (b) The multi-
plane alpha gradients Ad are computed from multi-plane alpha planes
by calculating the gradient of M corresponding to cd, and Ad is then
sparsified by discarding small gradients, which is used to refine the MPI
using our proposed sparse gradient descent strategy.

putationally efficient by sampling only around the
estimated geometry scaffolds, such as depth maps
[23] and surface mesh. However, these methods may
fail if the precomputed geometry scaffolds are incor-
rectly estimated for semi-transparent surfaces or thin
plates; therefore, they are not very robust for complex
scenarios.

Based on the above observations, we conclude that live
light field reconstruction remains a challenging task for the
following reasons:

1) Recovering a 3D light field from 2D images is a
difficult ill-posed inverse problem that necessitates either
dense input views or geometric priors learned from data;

2) Implicit representations save memory but are com-
putationally complex, resulting in a long inference time.
Explicit representations offer faster rendering speed but
require significant memory and time for constructing the
light field;

3) High-quality light field reconstruction necessitates so-
phisticated optimization to handle intricate geometry details
such as semi-transparent surfaces and thin structures.

To overcome the challenges, we propose RealLiFe, a
novel method that employs Hierarchical Sparse Gradient
Descent (HSGD) to produce high-quality light fields in real
time from sparsely sampled views.

Unlike previous methods [1], [9], [21] that directly pro-
cess and generate a full MPI, our method adopts a hierarchi-
cal approach, progressively refining it from low resolution
to high resolution. This approach draws inspiration from
the principles of Multi-View Stereo (MVS), where intricate
geometric details can be iteratively enhanced with high-
resolution features and well-established low-resolution geo-
metric structures [24], [25], [26], [27], [28], [29]. We extend

this concept from geometry to appearance, claiming and
proving that the visual details within a light field can also
be iteratively improved, given access to high-resolution cap-
tures and well-structured low-resolution representations.

By employing this hierarchical optimization pipeline,
the computational efficiency can be greatly improved. The
coarse stage not only reduces computation itself, it can also
provide a sparse acceleration structure for the fine stage
to further speed up the pipeline. This advantage aligns
perfectly with the intrinsic nature of a light field, which
is ”dense in representation but sparse in content”. A light
field, represented as an MPI in this paper, is a set of densely
arranged RGBα planes in shape H×W×D×4. Such a dense
structure is a heavy computational burden that DeepView
[1] has to infer patch by patch to get the complete light
field. However, the real-world scenes are sparsely scattered,
which presents a contradiction to the densely arranged
multiplane images and also highlights the potential and
validity of optimizing the light field in a hierarchical and
sparse manner.

Before the design for efficiency, it is imperative to ad-
dress the fundamental optimization process for deriving
an MPI from sparse views. This task poses a significant
challenge, as it involves solving an inverse problem. Con-
ventionally, this is accomplished by iteratively minimiz-
ing the discrepancies between the predicted and observed
measurements using analytic gradient descent, which can
be a time-consuming process. However, DeepView [1] in-
troduces a novel approach by incorporating the learned
gradient descent strategy [30], [31]. This strategy enables
the rapid generation of an MPI in only a few iterations
by explicitly computing MPI gradients and relying on the
neural network to perform adaptive gradient descent. We
also apply this strategy for rapid gradient descent, but, in
contrast to DeepView [1], which utilizes full-sized and full-
channel MPI gradients, our approach only employs sparsely
gradients that align with the scene contents. This choice
arises from the observation that gradients within vacuous
regions either insignificantly affect or negligibly contribute
to the final rendering quality.

Based on our observations, we present the fundamental
stages of the proposed Hierarchical Sparse Gradient Descent
(HSGD), as depicted in Fig. 2. For example, in one stage, the
multi-plane gradients Ad are initially obtained by comput-
ing the gradients of the MPI with respect to its RGB channel,
as outlined in DeepView [1]. Subsequently, Ad undergoes
sparsification by removing small-value gradients. Finally,
the sparse gradient descent module updates the MPI based
on the sparse gradients.

Experiments on public datasets demonstrate that com-
pared to previous methods [1], [9], [21], our optimization
strategy based on the sparsity of gradients significantly
reduces computational complexity without loss of accuracy.
Also, in comparison with methods [7] relying on surrogate
geometry, our method achieves superior visual performance
while maintaining high temporal efficiency.

Overall, the technical contributions are summarized as
follows.

• We present an optimization strategy: Hierarchical
Sparse Gradient Descent (HSGD), which efficiently
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Fig. 3. Application of our method to support a real-time 3D display. (a) Sparse multi-view images that serve as the input to our model. (b) Our
Hierarchical Sparse Gradient Descent (HSGD) is capable of generating multi-plane images (c) online at around 35 FPS. (d) Novel views can then
be rendered offline from a Multi-plane Image at approximately 700 FPS. (e) Several novel views rendered from the MPI provide enough light field
information to a 3D display, specifically a looking glass that supports naked-eye 3D effects from a wide range of views. (GD is short for gradient
descent.)

recovers high-quality light fields while effectively
reducing inference time and GPU memory usage.

• Extensive experiments on public datasets demon-
strate that RealLiFe achieves a PSNR improvement
of approximately 2db compared to other online ap-
proaches, or comparable performance while being on
average 100x faster than offline approaches.

• As a 3D display application demonstrated in Fig. 3,
our solution can generate MPIs at above 35 FPS, and
novel views can be rendered from a built-up MPI
at about 700 FPS for the resolution of 378 × 512.
Novel views of different angles are then provided to
a 3D display, which presents 3D effects in the naked
eye through multilayer light field decomposition and
directional backlighting [32].

2 RELATED WORK

We focus on live light field reconstruction in this paper,
which requires novel view synthesis that generalizes to
arbitrary scenes with high rendering quality and can be
processed in real time. However, existing approaches can
hardly achieve all these requirements.

2.1 High-quality Novel View Synthesis

The rendering quality of novel view synthesis has seen
significant improvement since the proposal of NeRF [3].
NeRF encodes a scene in a 3D radiance volume and op-
timizes the density and color of the volume using a simple
MLP. Novel views are generated by integrating the volume’s
density and color along each viewing ray. Based on the
success of NeRF, several methods such as Mip-NeRF [4],
RawNeRF [34], Ref-NeRF [35], and Mip-NeRF360 [36] have
further improved the rendering quality of the novel view
synthesis. For example, Mip-NeRF reduces objectionable
aliasing artifacts by casting cones and prefiltering the po-
sitional encoding function, while RawNeRF trains the NeRF
model on raw camera data to achieve novel high dynamic
range view synthesis. Ref-NeRF produces realistic shiny
surfaces by explicitly modeling surface reflections, and Mip-
NeRF360 solves the problem of unbounded scene novel
view synthesis with a non-linear scene parameterization,
online distillation, and a novel regularizer. Additionally,
another MPI-based method [21] parameterizes each pixel as
a linear combination of basis neural functions, successfully
reproducing realistic view-dependent effects.

Although these methods have improved the rendering
quality from different perspectives, they all require a long
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Fig. 4. The overview of RealLiFe. First, the PSV is constructed using multiview images by homographic warping, and the PSV is then downsampled
hierarchically at multiple resolutions. The output MPI is then generated in several iterations. Initially, the lowest-resolution PSV is fed to a 3D CNN to
extract a coarse-level MPI. The PSV and the upsampled MPI both go through the Sparse Gradient Descent module for a refined higher-resolution
MPI. This loop is repeated until the resolution of the output MPI reaches the same resolution as that of the input images. Finally, a novel view can
be easily rendered from the MPI using the repeated over operator [33].

per-scene optimization time because they train their models
to encode the content of a particular scene, making them not
generalizable to new scenes.

2.2 Generalizable Novel View Synthesis

To achieve generalizable novel view synthesis, several meth-
ods have been proposed that construct radiance fields from
image features. PixelNeRF [16] encodes the input images
into pixel-aligned feature grids and then renders points
along a target ray by projecting them on the input image.
For better performance, IBRNet [5] aggregates more infor-
mation(image colors, features and viewing directions) and
designs a ray transformer for decoding colors and densities.
GRF [15] and NeuRay [14] achieve occlusion-aware novel
view synthesis by incorporating the prior that ”The features
of a point in 3D space are the same when being viewing
from different angles”. StereoMag [21], LLFF [9], DeepView
[1] and MLI [8] achieve generalization by modeling the
scene as a set of fronto-parallel planes, in which multi-view
consistency are subtly encoded. However, MLI [8] conducts
an extra step to convert the planes to deformable layers and
achieves high visual metrics. MVSNeRF [6] also leverages
the concept of multi-view geometry and generalizes to new
scenes with a neural cost volume. Instead of introducing
image features and geometric priors for generalization, [37]
applies meta-learning algorithms to learn the initial weight
parameters for a NeRF model, enabling faster convergence.

Though generalizable, it still takes them seconds or
minutes to generate a novel view. In addition, methods like
PixelNeRF [16] and MVSNeRF [6] are not robust enough

that they usually require extra finetuning to produce satis-
fying results.

2.3 Real-time Novel View Synthesis

To achieve real-time inference speed of a trained scene,
structured representations and efficient computation skills
are employed. KiloNeRF [12] replaces the original large
MLP of NeRF with thousands of smaller faster-to-evaluate
MLPs, enabling up to 40 FPS of rendering speed. Plenoc-
trees [19] render novel views by representing the scene
in a structured octree-based 3D grid. FastNeRF [13] is
capable of rendering novel views at 200 FPS by caching
a deep radiance map and efficiently querying it. Except
for NeRF-like representations, a built-up MPI from Stereo-
Mag/LLFF/DeepView [1], [9], [21] can achieve a rendering
speed of 60 FPS. (The rendering speeds of above methods
are all evaluated on 800x800 images of Synthetic-NeRF [3]
dataset.) Despite the real-time inference speed of novel
view synthesis, real-time building-up of a new scene is
hard to be reached. The cutting-edge optimization-based
method: InstantNGP [38] reduces training time of NeRF
from hours to several seconds by using a hash grid and
hardware acceleration techniques. DeepView [1] is now the
fastest MPI-based method, however, it still requires about
50 seconds to generate an MPI. ENeRF [7] is the state-of-
the-art generalizable novel view synthesis method and can
render new views at 30 FPS on the ZJU-MoCap [39] dataset
by sampling few points around a computed depth map;
however, the rendering speed and image quality can still
be improved.
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2.4 Light Field Reconstruction
Instead of producing a single image at a time, there are
methods that output the entire light field of the scene as
multi-plane images [1], [9], [21] or layered mesh representa-
tions [2], [8], [40]. With a generated scene light field, novel
views can be rendered easily with nearly no computation
budget by simply ray querying. [2] encodes the scene in
a set of multi-sphere images and compresses them into an
atlas of scene geometry, allowing light field videos to be
streamed over a gigabit connection. Though this method
is real-time in rendering and streaming, it still requires a
long time to reconstruct a new scene light field. [41], [42],
[43] optimized for specific neural architectures for improved
reconstruction quality of light fields. Their sophisticated de-
signs for the light field capture systems and neural networks
result in high metrics in rendering quality but also make
them offline light field reconstruction methods. Starline [44]
and VirtualCube [45] are another two methods that make
live light field streaming possible. They both build up their
systems using several RGBD cameras, and the additional
depth channel enables fast scene geometry extraction, thus
saving much time for computation. However, in this paper,
we only compare RGB-based novel view synthesis methods
to explore their potential for live light field reconstruction.

3 METHOD

The proposed method, RealLiFe, aims to facilitate real-time
reconstruction of light fields using a set of sparse posed
source view images. To accomplish this goal, we introduce
Hierarchical Sparse Gradient Descent (HSGD), an efficient
and high-quality optimization technique for MPIs.

Fig. 4 presents an overview of the proposed method,
which comprises two primary processes: initial MPI gen-
eration and hierarchical sparse gradient descent. Sec. 3.2
introduces the initial MPI generation stage, which encom-
passes the construction of the plane sweep volume and
the initial generation of the MPI. Sec. 3.3 introduces the
hierarchical sparse gradient descent stage, as depicted in
Fig. 5. This module comprises three major operations: gradi-
ent formulation, gradient sparsification, and sparse gradient
update. Prior to discussing our method in detail, we provide
a concise introduction of the MPI, and our fundamental
optimization method, Learned Gradient Descent, in Sec.
3.1. Finally, we provide an introduction of our training
approach, with a primary focus on how we construct the
loss function, as outlined in Sec. 3.4.

3.1 Preliminaries
Multi-plane Image (MPI). An MPI [21] M is composed of
D fronto-parallel RGBα planes in the view frustum of a
camera. We denote the RGB channels of an MPI plane as cd
and the alpha channel as αd. The target view Ĩt is rendered
by compositing the MPI in the back-to-front order utilizing
the repeated over operator O as defined in [33]:

Ĩt = O(ωt(Mr)), (1)

where ωt warps the MPI Mr from reference view to target
view via homowarping. And the over operator O is defined
as the compact form:

O(M) =

D∑
d=1

cdαd

D∏
i=d+1

(1− αi). (2)

Learned Gradient Descent. Learned gradient descent
is firstly proposed by [30], [31] to solve ill-posed inverse
problems for CT reconstruction. Here, we follow DeepView
[1] to apply learned gradient descent to the MPI generation
problem. Inverse problems refer to problems where one
seeks to reconstruct parameters characterizing the system
under investigation from indirect observations. Mathemat-
ically, the problems can be formulated as reconstructing a
signal ftrue ∈ X from data g ∈ Y :

g = T (ftrue) + δg, (3)

where T : X → Y is the forward operator that models how
a signal generates data without noise, and δg ∈ Y is a single
sample of a Y -valued random variable that represents the
noise component of data.

Typically, such problems are resolved by iteratively up-
dating the reconstructed f̂ with the analytical gradient
descent method:

f̂n+1 = f̂n + λ[
∂L(f̂n)
∂f̂n

+
∂ϕ(f̂n)

∂f̂n
], (4)

where L is a loss function measuring the difference between
the true signal ftrue and the reconstructed f̂ , λ is the step
size for each iteration, and ϕ is a prior on ftrue.

However, it requires too many iterations to converge and
is very likely to fall into local optima. Therefore, [30], [31]
propose to use learned gradient descent instead of analytical
gradient descent, where the update rule is defined by a deep
neural network Nω :

f̂n+1 = f̂n +Nω[
∂L(f̂n)
∂f̂n

+ f̂n]. (5)

The learned gradient descent approach is already proved
in various works to achieve better results with fewer itera-
tions.

3.2 Initial MPI Generation

In this section, we delve into generation of the Initial MPI, a
pivotal component in our optimization process, Hierarchical
Sparse Gradient Descent. This process involves both the
construction of the PSV and a straightforward network
forwarding.

Hierarchical PSV Construction. Given N source view
images INi=1 of size H × W × 3 and their corresponding
camera poses [Ki, Ri|ti], as well as for the reference view Ir ,
we construct the plane sweep volume P leveraging inverse
homographic warping:

H−1
i (d) = KiRi(I+

(R−1
i ti −R−1

r tr)n
TRr

d
)R−1

r K−1
r , (6)

where n denotes the plane normal and I is an identity
matrix. The inverse homography matrix H−1

i (d) warps the
reference view meshgrid, defined by pixel positions (u, v)
at depth d, to each source view Ii. And the inverse warped
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Fig. 5. The sparse gradient descent module. (a) The MPI gradients ∇ comprises the input plane sweep volume P and the warped alpha gradients
Aw

i for each source view i. (b) The volume V is composed of the MPI M and the MPI gradients ∇. It is sparsified by selecting the top k voxels
along the depth axis based on alpha gradients of the reference view. Simultaneously, the output sparse indices S store the positions of the selected
k voxels along the depth axis. (c) The sparsified volume Vs is fed to a 3D CNN (learned gradient descent) for a refiend sparse MPI residual. Finally,
the sparse gradient update module utilizes the sparse indices S to add the sparse MPI residual to the input multi-plane image M , resulting in a
refined multi-plane image.

source view Iw
−1

i is grid-sampled by the inverse warped
meshgrid:

Iw
−1

i (u, v, d) = grid sample(Ii,H−1
i (d)[u, v, 1]T ), (7)

By concatenating all the inverse warped source view
images Iw

−1

i along the depth dimension, the plane sweep
volume P of size N ×D ×H ×W × 3 is constructed.

P = [Iw
−1

0 , Iw
−1

1 , ..., Iw
−1

N ] (8)

To enable optimization at different scales, we downsam-
ple it hierarchically at multiple resolutions. Specifically, we
create the plane sweep volumes {Pl|1 <= l <= L} of size
N ×D ×H/2l ×W/2l × 3 for L iterations.

Network Forwarding. The coarsest-level PSV is re-
shaped into 3N ×D×H/2l ×W/2l and fed to a 3D neural
network to produce the initial MPI. The neural network is
trained to aggregate information across views and generate
a coarse MPI for subsequent optimization.

3.3 Hierarchical Sparse Gradient Descent

Hierarchical sparse gradient descent is a coarse-to-fine ap-
proach that progressively refines the MPI using sparse
gradients. This design is supported by two key insights:
Coarse-to-fine Appearance Refinement and Sparse Gradi-
ents Suffice for Light Field Reconstruction. The coarse-to-
fine geometry refinement has previously demonstrated its
efficacy in various MVS works [24], [25], [26], [27], [28],
[29]. In this context, a low-resolution geometric scaffold
can be rapidly derived and employed as a prior to guide
the subsequent high-resolution detail refinement process.
Similarly, the task of deriving an MPI involves allocating

scene contents to their respective depth planes. So the hier-
archical pipeline is well-suited for MPI generation, offering
a structured foundation upon which the learned gradient
descent algorithm can iteratively refine appearance details.
And the choice of sparse gradients stems from the empirical
observation in Fig. 6 that after only one iteration of network
forwarding, above half of the voxels in an MPI become
empty. Hence, any subsequent optimization targeting these
empty regions does not lead to appreciable enhancements
in rendering quality but instead incurs unnecessary compu-
tational overhead.

So we propose Hierarchical Sparse Gradient Descent,
an adaptive and iterative approach that only leverages
sparse gradients for efficient optimization. Specifically, this
method consists of three steps: gradient formulation, gradi-
ent sparsification, and sparse gradient update. The detailed
process is shown in Fig. 5.

Gradient Formulation. To obtain the sparse MPI gradi-
ent, we first formulate the components of input gradients.
They are defined as the concatenation of the input PSV P

and the inverse warped alpha gradient Aw−1

i of each source
view i. Theoretically, the full components of MPI gradients
[1] should be in the format of Eq. 9 (The detailed derivation
can be referred from [1].):

∇ = [P, P̃ ,Aw−1

1 , ...,Aw−1

N , T w−1

1 , ..., T w−1

N ], (9)

where P̃ is the PSV constructed with rendered images at
each source view from the generated MPI, and T w−1

i is the
warped MPI gradient respective to MPI’s α channel. But we
simplify the gradients to be in the format of 10:

∇̃ = [P,Aw−1

1 , ...,Aw−1

N ], (10)
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Fig. 6. Proportions of empty pixels of individual MPI planes throughout optimization iterations. (a) A rendered image of RealLife (without using
HSGD) with 40 MPI planes. (b) A subset of MPI planes (i.e., the 12th, 16th, and 20th MPI planes) of three iterations. (c) Proportions of empty pixels
in individual MPI planes. (pixels characterized by α < 0.1 are considered empty, as their contribution to rendering quality is marginal.)

for several reasons:
1) The iterative optimization resembles a residual re-

finement network, where the PSV P is intuitively effective
stable and precise residual information directly derived
from the input data.

2) The MPI generation process involves the allocation of
scene contents to their respective depth planes, with A being
in perfect alignment with the scene contents. This alignment
constitutes a crucial gradient component for the accurate
construction of MPIs.

3) In the quest for an optimal trade-off between ren-
dering quality and computational efficiency, it is proved in
DeepView [1] that P̃ and T can only marginally enhance the
ultimate rendering quality, but their large spatial sizes can
potentially hinder real-time efficiency.

To compute Aw−1
i for a single source view i, the MPI of

the reference view is initially warped to source view i to
obtain Mi. Then the alpha gradient Aid corresponding to
depth d is calculated by the following equation:

Aid =
∂O(Mi)

∂cd
= αd

D∏
j=d+1

(1− αj), (11)

After this, the inverse warped alpha gradient Aw−1
i is de-

rived by applying inverse homographic warping Eq. 6 from
the source view to the reference view.

After formulating the gradients, the full 3D volume V to
be sparsified and optimized is the concatenation of ∇̃ and
M :

V = [∇̃,M ], (12)

Gradient Sparsification. To safely sparsify gradient com-
ponents without adversely affecting the final rendering
quality, it becomes imperative to establish criteria for the
exclusion of voxels that impart minimal contributions. A
commonly adopted strategy in various Multiview Stereo
(MVS) studies [24], [25], [26] is to reduce the number of
depth layers in the full cost volume from D to k, where k

is usually an odd number, composed of the plane with the
highest probability and its adjacent 2 × (k − 1)/2 layers.
However, this MVS-sampling strategy primarily relies on
surface-centric geometric considerations, which might be
too aggressive to capture some light field details like semi-
transparent objects and thin plates. If we revisit Eq. 2, it can
be rewritten as:

O(M) =

D∑
d=1

cdAd, (13)

from which we can easily find that the influence of the color
component cd of each MPI plane on the ultimate color is
determined by the alpha gradient derived from the reference
view Ad. The alpha gradient aligns more closely with the
scene contents, as it takes into consideration not only solid
geometry but also semi-transparent surfaces and thin plates,
making it a more comprehensive and effective choice. In the
ablation study of Sec. 5.5, we demonstrate that our sparsifi-
cation strategy consistently outperforms the MVS-sampling
approach in terms of overall performance. Consequently, the
criterion for gradient sparsification is determined by Ad.

The remaining challenge is to decide the optimal k for
gradient sparsification. Fig. 7 provides insights into the
determination of the optimal value for k. For instance,
when k = 7, the rendered color almost recovers more than
80% of the original color, indicating a trade-off between
computational efficiency and rendering quality. Generally,
it appears from Fig. 7 that values of k in the range of 5 to
7 represent favorable choices, achieving a balance between
time efficiency and rendering quality. Further ablation ex-
periments on different values of k will be presented in Sec.
5.5.

After sparsification, only k voxels with the highest alpha
gradient along the depth axis are kept, resulting in the com-
pression of the input volume V , which is the concatenation
of the original gradient volume ∇̃ and the input MPI M ,
from C×D×H×W to C×k×H×W . The sparse indices
S, which store the positions of the k selected voxels in the
original depth axis, are also retained to enable the generated
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Fig. 7. The influence of k on the rendering quality. (a) A rendered image of RealLiFe (without using HSGD) with 40 MPI planes. (b) Top 5 MPI
planes with the highest alpha gradients A for the red pixel. (The MPI is multiplied by A to better visualize its contribution to the final rendering
result.) (c) The alpha gradients of the red pixel across 40 MPI planes, with the red dotted lines partitioning d based on whether its alpha gradient
falls within the top k. (d) The color ratio (RGBk=3,5,7/RGBk=40) and PSNR of the rendered red pixel in comparison to when k = 40.

spasified MPI residual to be added to the input complete
MPI for an update. It is evident that while the complete
spatial structure of the light field is sacrificed after sparsi-
fication, the sparsified layers are retained in their original
spatial order, preserving the potential surface structure of
the light field for subsequent optimization.

Sparse Gradient Update. After the gradient components
of each voxel has been decided, a network backbone needs
to be decided for the learned gradient descent module.
A CNN with large perceptive fields is proved effective
in DeepView [1]. However, after gradient sparsification,
an issue arises where adjacent voxels may not necessarily
belong to the same depth plane. This raises concerns about
the suitability of convolutional operations on these voxels.
So a straightforward decision for the backbone would be an
MLP, which treats each voxel independently. However, this
choice compromises the benefits of an extensive receptive
field, resulting in suboptimal performance. Moreover, even
though the depths of a selected subset of voxels may exhibit
considerable disparities, convolutional processing enables
the model to adapt to these variations by learning shared
features and patterns across different regions. We further
prove the adaptability of the 3D CNN in enhancing ren-
dering quality without introducing conspicuous artifacts
through qualitative analysis in Sec. 5.3 and quantitative
evaluation in Sec. 5.2.

As shown in Fig. 5 (c), the sparsified input volume Vs

goes through a 3D CNN, functioning as the learned gradient
descent network, to derive the sparse MPI residual for an
MPI refinement iteration. The voxels in the sparse MPI
residual are then restored to their original positions using
the sparse indices S, and subsequently added to the input
MPI to obtain a refined version:

Mn+1 = Mn +R(Nw(Vs), S), (14)

where Nw is the 3D CNN that functions as the learend
gradient descent neural network, and R is the operator
that restored the voxels of the sparse MPI residual to their
original positions.

3.4 Training
During training, the network parameters are progressively
optimized by minimizing the difference between the syn-

thesized views and the ground truth novel views. And
we choose the commonly used deep feature matching loss
LV GG [46] as the basic loss function. In detail, our overall
rendering loss Lr is a weighted average loss of all iterations,
and the rendering loss for each iteration is also a weighted
average one for both the synthesized reference and source
views:

Lr =

l∑
i=1

λi(LV GG(Iri , Ĩri) + µ

N∑
j=1

LV GG(Iji , Ĩji)), (15)

where Iri and Iji are the ground truth reference and source
images at iteration i, Ĩri and Ĩji are the rendered reference
and source images from the generated MPI at iteration i.
And l is the number of iterations, N is the number of input
source images, λi is a hyper-parameter weighing the im-
portance of each iteration, and µ is also a hyper-parameter
balancing reference and source image supervision.

In addition, we propose a sparsity loss Ls that regular-
izes the alpha values of the MPI to be close to 0 or 1:

Ls =

∑H
h=1

∑W
w=1

∑D
d=1 log(1.5− |0.5− αh,w,d|)
H ×W ×D

, (16)

where αh,w,d is the alpha channel of the MPI, and H,W,D
are the height, width and number of depth planes of the
volume. This loss aims to reduce the entropy of the MPI with
respect to its α channel. It is ideal for gradient sparsification,
as it allows us to select more informative top k samples that
lie around the surfaces of a scene. The overall training loss
is:

L = Lr + λsLs, (17)

where λs is a hyper-parameter balancing color supervision
and sparsity regularization.

4 IMPLEMENTATION DETAILS

The generalized model was trained using an RTX 3090 GPU
with the Adam optimizer [47]. The initial learning rate was
configured at 1e− 3, with a reduction by half if the training
loss consistently decreased for a continuous span of 10
epochs. The model underwent training for 1000k iterations,
taking approximately 13 hours to complete. The trainable
components within the entire pipeline included the 3D
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Fig. 8. The backbone 3D CNN of RealLiFe, which contains only three
convolution layers.

CNNs responsible for converting the input plane sweep
volume into a multi-plane image (as depicted in Fig. 4) and
refining the sparse MPI gradient (as illustrated in Fig. 5).
The structure of the 3D CNN, as shown in Fig. 8, comprised
5 basic convolutional blocks (a convolution layer followed
by a batchnorm layer and a relu layer) and 1 1x1x1 3D
convolution layer. To further improve the efficiency of our
method, we optimize to run our pipeline with TensorRT1.

To configure the loss function hyperparameters, a pref-
erence was given to increased color supervision from the
reference view and the last iteration, while maintaining
the impact of the sparsity loss. An example set of these
parameters was as follows: λ1 = 0.2, λ2 = 0.3, λ3 = 0.5,
µ = 0.5, λs = 0.2. Regarding experimental parameters,
the model utilized 40 MPI planes, underwent 3 network
iterations, and employed a sparsification factor k set to 5
as the default. These settings may vary in the context of
ablation experiments.

5 EXPERIMENTS

5.1 Baselines, datasets and metrics

Baselines. In order to evaluate the visual performance and
real-time efficiency of our method, we compare it with four
generalizable novel view synthesis methods: IBRNet [5],
MVSNeRF [6], and ENeRF [7]. Additionally, we compare
our method with five light field reconstruction methods,
namely Stereo Magnification (StereoMag) [21], Soft3D [49],
MLI [8], and DeepView [1]. Among the baseline methods,
IBRNet, MVSNeRF and ENeRF conduct extra finetuning
experiments to improve performance. However, finetuning
takes so much time that it is incompatible with real-time
light field reconstruction, thus we only compare the results
without finetuning. LLFF [9] is excluded as a baseline
method because the number of input views for the released
model is set fixed to 5. Additionally, LLFF fuses multiple
MPIs to render novel views, leveraging information of up
to 10-20 input views, making it a method with dense view
inputs. However, it is essential to acknowledge that LLFF
[9] remains a robust approach for generating high-quality
light fields offline.

Datasets. For training and evaluation, we select 4
datasets: Spaces [1], Real Forward-Facing [9], SWORD [40]
and Shiny [48]. To compare results on the Real Forward-
Facing evaluation set, comprising 8 scenes, the SWORD
evaluation set, comprising 25 scenes (selected from the total
evaluation scenes) and Shiny evaluation set, comprising 8
scenes, we trained our method using a combined training

1. https://developer.nvidia.com/tensorrt

set in the same manner as IBRNet [5]. This combined
training set consists of 90 scenes from the Spaces training
set and 35 scenes from the Real Forward-Facing training
set. To compare results on the Spaces evaluation set, which
consists of 10 scenes with three settings of large, medium,
and small baselines, we trained our method using the same
training dataset as DeepView [1], comprising 90 scenes from
the Spaces training set.

Metrics. We compared the visual performance of the pro-
posed method using standard metrics, structural similarity
(SSIM), peak signal-to-noise ratio (PSNR), and perceptual
similarity (LPIPs). We evaluated the temporal efficiency of
all methods based on Generation Time, the time required
to generate a single representation (RGB images for IBR-
Net [5], MVSNeRF [6] and ENeRF [7], MPIs for Soft3D
[49], StereoMag [21], DeepView [1] and our method, multi-
layered meshes for MLI [8]). Furthermore, given that light
field reconstruction methods yield light field representations
suitable for offline rendering, we compared the offline ren-
dering speed of light field reconstruction methods, also in
FPS. (We use the OpenGL renderer provided by LLFF [9] to
evaluate the offline rendering speed.) To assess the viability
of each method for 3D display applications, we evaluated
their 3D display efficiency (measured in FPS), which we define
as the reciprocal of the time required to provide sufficient
light field information to support light field rendering on a
3D display. Specifically, a 3D display (e.g., a looking glass)
requires n views (n is set to 18 in Tab. 1) at different viewing
angles to reproduce a light field, providing a continuous,
forward-facing viewing experience. Novel view synthesis
methods necessitate n forward processes to generate n new
views. In contrast, light field reconstruction methods require
only a single forward process to generate n novel views
because the built-up representations enable fast novel view
rendering in the forward-facing viewing range.

5.2 Experiment Configurations

We compare our method with state-of-the-art generalizable
novel view synthesis methods and light field reconstruction
methods on public datasets including SWORD [40], Real
Forward-Facing [9], Shiny [48] and Spaces [1].

SWORD, Real Forward-Facing and Shiny. To compare
results on a sparse view setting, we set the number of input
views to 3 for all methods. The evaluation image resolution
for three datasets is 378 × 512, and the number of MPI
planes for our method is set to 40. To compare with MLI
[8], we choose their best-performance model SIMPLI-8L that
uses 8 layered meshes for representations. We trained two
versions of our models, RealLiFe and RealLiFe-2I. RealLiFe
has 3 iterations of learned gradient descent, while RealLiFe-
2I has 2 iterations, directly upsamping the 1/4-scale MPI to
the original scale. In order to assess the interpolation and
extrapolation capabilities, we evaluate all views from the
three datasets. For each view of a given scene, we select the
nearest available 3 views as input. The evaluation results for
a single scene are calculated by averaging the results across
all views. Likewise, the final evaluation results for a dataset
are computed by averaging the results across all scenes.

Spaces. We follow the configuration of DeepView [1] to
compare with their evaluation results. The number of input
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TABLE 1
Quantitative comparison on SWORD [40] (25 scenes), Real Forward-Facing [9] (8 scenes) and Shiny [48] (8 scenes) evaluation dataset. The

rank-1 method’s metrics are highlighted in deep green, while those of the rank-2 method are highlighted in light green.

Category Model Generation
Time, sec

Offline
Rendering, fps

3D Display
Efficiency, fps

SWORD Real Forward-Facing Shiny

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Offline
IBRNet [5] 4.174 - ∼0.01 23.04 0.77 0.23 23.64 0.78 0.21 24.20 0.82 0.17
MVSNeRF [6] 1.523 - ∼0.04 21.79 0.74 0.24 22.25 0.75 0.21 23.33 0.83 0.14
SIMPLI-8L [8] 1.677 ∼480.0 ∼0.60 24.22 0.83 0.13 25.01 0.86 0.09 27.27 0.91 0.06

Online
ENeRF [7] 0.030 - ∼1.85 22.95 0.75 0.19 22.90 0.77 0.18 26.03 0.86 0.10
RealLiFe 0.026 ∼700.0 ∼37.04 23.82 0.77 0.20 25.46 0.84 0.15 27.15 0.85 0.10
RealLiFe-2I 0.022 ∼700.0 ∼45.45 23.80 0.77 0.20 25.33 0.84 0.16 27.03 0.85 0.10

TABLE 2
Quantitative comparison on Spaces evaluation dataset in terms of
SSIM. The rank-1 method’s metrics are highlighted in deep green,

while those of the rank-2 method are highlighted in light green.

Configuration Soft3D [49] StereoMag+ [21] DeepView [1] RealLiFe RealLiFe-2I

Small baseline 0.9260 0.8884 0.9541 0.9396 0.9286
Medium baseline 0.9300 0.8874 0.9544 0.9317 0.9159
Large baseline 0.9312 0.8673 0.9485 0.9180 0.9052

Generation Time, sec - - ∼20.00 0.044 0.037

views is 4, the evaluation image resolution is 480×800, and
the number of planes of an MPI is 40. We use the same input
and evaluation views as DeepView [1] for three baseline
settings.

Our models are trained for 100,000 iterations for both
configurations, and all methods are evaluated on an RTX
3090 GPU.

5.3 Quantitative Results

Tab. 1 presents the quantitative results on SWORD [40], Real
Forward-Facing [9] and Shiny [48]. We classify all methods
into offline and online according to Generation time.

Compared with offline methods, our model RealLiFe
and RealLiFe-2I stands out in terms of visual metrics,
achieving top-1 or top-2 rankings on three datasets. And
our default model RealLiFe strikes a balance between the
rendering quality and efficiency. Our models, on average,
achieve a 100× faster generation speed compared to other
offline methods. Compared with the online method. Our
models are a little bit faster than ENeRF [7] in generation
time; however, our method exhibits superior visual met-
rics on three datasets. When considering the metric of 3D
Display Efficiency, our method stands out as the only one
capable of supporting real-time light field video display.
This is due to its high temporal efficiency in both light field
reconstruction and offline rendering speed.

Tab. 2 lists the quantitative results on the Spaces eval-
uation set, where we can see that DeepView generates the
highest-quality rendering results overall, followed by our
method and Soft3D [49]. The decrease in rendering quality
may be attributed to the fact that our method depends on
network connections to propagate visibility information. As
we increase the baseline, there is a corresponding increase in
the number of network connections required to effectively
propagate visibility, as noted in [1]. However, in terms of
time efficiency, our method is about 400 times faster than
DeepView. The Generation Time of Soft3D and StereoMag+

are left as ”-” because Soft3D is not open-sourced and

StereoMag+ is a modified version by the authors of Deep-
View, so that we can not evaluate their time efficiency accu-
rately. To summarize, we have the following observations:

• Compared with offline novel view synthesis methods
[5], [6] and offline light field reconstruction methods
[1], [8], [21], [49], our approach achieves around
100× speedup ratio with superior or comparable
visual performance.

• Compared with the online novel view synthesis
method [7], our method achieves better visual per-
formance, while maintaining comparable time effi-
ciency.

• Novel views can be rendered at significantly higher
FPS than other novel view synthesis methods [5], [6],
[7] from our generated MPIs. This property makes
our method particularly suitable for displaying on
3D displays and other light mobile devices.

5.4 Qualitative Results

We show qualitative comparisons on Real Forward-facing
[9] (the first two rows), Shiny [48] (the third row) and
SWORD (the last row) in Fig. 9. For a comprehensive com-
parison with previous state-of-the-art methods, we evaluate
the rendering quality in the following aspects.

Occluded Regions. In Fig. 9 (a), ghosting effects are pro-
duced at the edges of flowers by ENeRF [7] and MVSNeRF
[6]. In contrast, our method generates clear boundaries,
comparable to IBRNet [5] and SIMPLI-8L [8]. In Fig. 9 (b),
ENeRF [7] produces an incomplete horn, and MVSNeRF
[6] blurs the background around the horn. Our results are
comparable to IBRNet [5], which show a complete horn and
clean background, but not as good as SIMPLI-8L [8].

Intricate Texture Details. Fig. 9 (d) shows the faces
of two statues with intricate texture details. ENeRF [7],
MVSNeRF [51], and IBRNet [5] produce varying degrees of
blurriness, while our method and SIMPLI-8L [8] restore the
complicated texture details very well.

View-dependent Effects. Fig. 9 (c) and (e) show view-
dependent specularity effects on the cd and the black pillar,
respectively. For the cd scene, MVSNeRF [6] fails to produce
reasonable specular patterns, and ENeRF [7] and SIMPLI-8L
[8] generate blurry edges of the white reflection. However,
our method and IBRNet [5] produce more accurate view-
dependent effects. For the black pillar, ENeRF [7], SIMPLI-
8L [8], and MVSNeRF [6] fail to generate the complete shape
of the pillar, and IBRNet [5] does not restore the specularity
as accurately as our method.
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Fig. 9. Qualitative results on Real Forward-Facing [9] (a) and (b), SWORD [50] (c) and (d) and Shiny [48] (e) evaluation datasets.
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Fig. 10. Extra qualitative comparison on Shiny [8] and IBRNet collected [5].
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Fig. 11. Qualitative comparison on the ablation configuration of with or
without sparsity loss. The left and right columns correspond to rendering
results produced by the model trained with sparsity loss and without
sparsity loss respectively. The PSNR for the left rendered image and the
right rendered image are 28.51 and 27.42. The MPI planes trained with
sparsity loss are clearer and less cloudy.

Thin Plates. In Fig. 9 (e), the green stick of the scooter
is a very thin plate. ENeRF [7], MVSNeRF [6], and IBR-
Net [5] fail to restore the clear structure of the stick. Our
method produces a relatively complete shape, comparable
to SIMPLI-8L [8].

Among all the evaluation metrics, our approach achieves
comparable or better visual quality with offline approaches,
and performs superior to online approaches. More qualita-
tive comparison results on Shiny [8] and IBRNet collected
[5] are shown in Fig. 10. Our method produces clear re-
sults that accurately captures view-dependent effects, albeit
with slightly less sharpness compared to SIMPLI-8L [8].
This trade-off is made in exchange for reduced time spent
constructing the light field representations.

5.5 Ablation Study

In this section, we conduct a series of ablation experiments
to assess the contribution of each component to the final ren-
dering performance. The metrics of all experiments are eval-
uated on the Real Forward-facing [9] dataset, which contains
typical challenging cases such as occlusion, complex scene
geometry, and view-dependent effects. The rendered images
for training and evaluation are downscaled to 378×512, and
the number of input views is set to 3. The default number
of planes in an MPI is 40. For detailed ablation settings and
details, please refer to Tab. 3.

Sparsification factor k. It is evident that increasing the
value of k results in enhanced rendering performance but at
the expense of slower generation speed. Hence, it is crucial
to identify an appropriate k that strikes a balance between
rendering quality and efficiency. Notably, as k surpasses
the value of 7, the demand for GPU memory during the
training process exceeds the capacity of an RTX 3090 GPU.

To circumvent this limitation, models with k exceeding 7
have to be trained and inferred in smaller patches, which
may inevitably downgrades the rendering quality. So we
conducted ablation on k with values 3, 5 and 7 in Tab. 3.
The results confirm that an increasing number of k results
in marginal increase in visual quality but obvious decrease
in generation speed.

Number of iterations. Comparing the configurations of
the default model with that of L=2 (2 iterations) in Tab. 3, it
is evident that employing additional iterations of learned
gradient descent yields only a marginal enhancement in
rendering quality. However, this refinement results in a no-
table decrease of approximately 8 FPS in temporal efficiency.
Therefore, to strike a balance between rendering quality
and efficiency, employing a 2-iteration model suffices. This
efficiency trade-off stems from the diminishing returns of
increased iterations, where the incremental improvement
in rendering quality does not adequately offset the cost
in terms of temporal performance, hence motivating the
preference for the 2-iteration model.

Number of planes. When comparing the configurations
of the default model, D=16 (fewer planes), and D=64 (fewer
planes) in Tab. 3, it becomes evident that employing too
few planes results in a substantial deterioration in rendering
quality, albeit compensating for expedited generation speed.
Conversely, an increase in the number of planes yields only
marginal enhancements in rendering quality while signif-
icantly diminishing temporal efficiency. This observation
suggests the presence of a potential saturation point for the
number of MPI planes. Beyond this point, the incremental
addition of planes may not yield linear improvements in
performance.

Sparsity Loss. The default model demonstrates superior
rendering quality compared to the w/o sparsity loss in Tab.
3. And Fig. 11 visually compares the differences in the ren-
dered images and individual MPI planes from experiments
conducted with and without the sparsity loss. Compared
to the model trained with sparsity loss, the model trained
without it generates rendered images that display more
artifacts, particularly around sharp edges. A comparison
of individual MPI planes shows that those produced by
the model with sparsity loss contain clearer surfaces. This
evidence suggests that sparsity loss aids the network in
minimizing scene content layout ambiguity, resulting in
cleaner and sharper images.

Backbone network. Unlike the most straightforward
way to process the sparse MPI gradients with an MLP, we
employ a 3D CNN for better performance as discussed in
Sec. 3.3. We can see from Tab. 3 that the configuration of
MLP backbone network results in a reduction in rendering
quality when compared to the default model. The diminished
quality is attributed to the limited receptive field of an MLP.
Given that the default 3D CNN structure aims to strike a
balance between rendering quality and efficiency, further
exploration of a more robust and efficient architecture is
warranted to enhance performance.

Spasification criterion. In Section 3.3, we referenced an
MVS [24], [25], [26], [27], [28], [29]-style gradient sparsifica-
tion approach that involves selecting the layer with the high-
est alpha gradient along the depth axis as well as its adjacent
(k − 1)/2 layers to form a sparsified volume of k layers of
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Fig. 12. The border artifacts of our approach. The borders of our ren-
dered image contains obvious color difference.

gradient data. This strategy, however, only takes geometry
into consideration and may not adequately capture certain
light field intricacies, such as semi-transparent objects and
thin structures. An overall comparison in Table 3 reveals that
the MVS-sampling strategy exhibits lower rendering quality
when compared with the default model.

TABLE 3
Quantitative ablation of the design choice on Real Forward-facing

evaluation set.

Configuration Generation
FPS↑ PSNR ↑ SSIM↑ LPIPS↓

k = 3 43.29 24.95 0.83 0.17
k = 7 32.79 25.51 0.84 0.15
D = 16(fewer planes) 54.64 24.39 0.79 0.19
D = 64(more planes) 28.57 25.48 0.84 0.15
L = 2(2 iterartions) 45.45 25.33 0.84 0.16
w/o sparsity loss 31.73 25.20 0.81 0.16
MLP 48.54 24.86 0.82 0.17
MVS-sampling 37.04 24.34 0.79 0.19

default model 37.04 25.46 0.84 0.15

6 CONCLUSION

This paper presents a novel method for efficiently re-
constructing light fields using hierarchical sparse gradient
descent. Our proposed method achieves a resolution of
378 × 512 for light field representations (MPIs) at a frame
rate of above 35 FPS, from which novel views can be ren-
dered at around 700 FPS. The hierarchical sparse gradient
descent module of our network focuses on scene-aligned
sparse MPI gradients, resulting in significant improvements
in temporal efficiency without compromising rendering
quality. Our method has the potential to deliver high-quality
and real-time light field videos for XR and Naked Eye 3D
display devices.

Limitations. There are some limitations of our approach.
Firstly, our current implementation can only be trained with
a fixed number of views, and the order of input views
may slightly affect the final rendering quality. Secondly,
our model is unable to produce relatively good results at
the borders of the image where not all source views are
overlapped, shown in Fig. 12.

Future work. Although the proposed approach is able to
generate light fields at above 35 FPS of resolution 378×512,
its efficiency could still be improved with customized
CUDA kernels, which is not emphasized in this paper. Fur-
thermore, a robust and adaptive view-aggregating module

is required to support an arbitrary number of input views.
This enhancement will facilitate the use of our model for
various camera configurations.
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